metals treatment and compressed air supply

Rolf Frischknecht, Roland Steiner
ESU-services Ltd.
Contents

- Overview of processes analysed
- General modelling principles
- Description of life cycle inventories of machine processing
- Conclusions

Overview of processes analysed

- Average machine processing
- Degreasing of metal surfaces
- Chipping
- Laser machining
- Chippless shaping
- compressed air supply
Modelling principles: capital equipment

• factory infrastructure:
 demand of a share of capital equipment included in all machining datasets
• exception “laser machining”:
 no factory hall demand included, as no correlation between machining hours and factory infrastructure
• exception “compressed air supply”:
 considered ancillary process (e.g., to metals machining) in a factory

Modelling principles: Degreasing

• machining datasets do NOT include degreasing
 Reason:
 - machining is per mass (or time in the case of laser machining)
 - degreasing is per surface
• “surface to mass” ratio must be known
• practitioner needs to add degreasing dataset to each individual machining dataset
Modelling principles: Reference unit and material input

- chipping datasets:
 - per kg material removed
 - material removed is an input
- chipless shaping:
 - per kg material processed
 - no material input
- laser machining:
 - per hour processing
 - no material input (a few mg/sec)
- compressed air supply:
 - per m³ comp. air supplied (including losses in the network)
 - per m³ comp. air produced

Average machine processing

- average product manufacturing:
 - steel
 - chromium steel
 - aluminium
 - copper
 - metal (82.4/2.0/3.3/12.2 %)
- additional datasets:
 - machine (manufacturing)
 - machine operation
 - factory (construction)
 - factory operation
 - metal input
Inventory data

- Data from 8 mechanical processing machines
- Average capacity about 8,000 tons from 44 to 210,000 tons capacity
- data from 2003 to 2006
- data includes
 - solvents, consumption
 - solvents, emission: 0.56g/kg metal product
 - lubricating oil
 - compressed air
 - thermal energy
 - electricity

machine and factory

- manufacture data:
 based on the same 8 machines
- factory operation:
 ancillary energy consumption, water consumption and wastes generated
- metal working factory:
 - includes building hall and land use
 - data based on three manufacturers
Degreasing of metals

- industry data from European household device manufacturer
- inventory data includes:
 - electricity
 - thermal energy
 - industrial cleaning detergents
 - sodium chloride
 - sulphuric acid
 - water

Turning

- Two phases in treatment: roughing, dressing and average
- Two different technologies: conventional and CNC (Computerized Numerical Control)
- Five different metals: steel, NiCr-steel, cast iron, aluminium, brass
- Inventory data:
 - electricity
 - compressed air (CNC only)
 - lubricating oil (CNC only)
 - factory (operation and construction)
 - amount of metal removed
Results: ecological scarcity 06

Contributions: ecological scarcity 06
Drilling

- Two different technologies: conventional and CNC
- Five different metals: steel, chromium steel, aluminium, copper, brass
- Inventory data:
 - electricity
 - compressed air (CNC only)
 - lubricating oil (CNC only)
 - capital equipment
 - factory operation
 - amount of metal removed

Results: ecological scarcity 06

![Bar chart showing ecological scarcity for different metals in CNC drilling](chart.png)
Milling

- Four different process modes:
 - large and small parts, dressing and average
- Four different metals:
 - steel, chromium steel, cast iron, aluminium
- Inventory data:
 - electricity
 - compressed air
 - lubricating oil
 - amount of metal removed

Results: ecological scarcity 06
Laser machining of metals

- Two different laser systems:
 - YAG (Yttrium-Aluminium garnet)
 - CO₂

- Different laser sizes:
 - YAG: 30, 40, 50, 60, 120, 200, 330, 500 W
 - CO₂: 2, 2.7, 3.2, 4.0, 5.0, 6.0 kW

- Total operation time:
 - YAG: 2 hours/day; 5 days/week; 15 years
 - CO₂: 12 hours/day; 5 days/week; 15 years
Laser machining: inventory data

- **YAG laser systems:**
 - electricity
 - cooling water (larger units only)
 - air emissions of particulates, NO\textsubscript{X}, and ozone
 - machine manufacture

- **CO\textsubscript{2} laser systems:**
 - electricity
 - industrial gases (helium, nitrogen, carbon dioxide)
 - air emissions of helium, particulates, NO\textsubscript{X}, CO\textsubscript{2}, and ozone
 - machine manufacture

Results: ecological scarcity 06

<table>
<thead>
<tr>
<th>Laser Machining of Metal</th>
<th>Ecopeints/hour operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>YAG, 40W</td>
<td>10000</td>
</tr>
<tr>
<td>YAG, 120W</td>
<td>20000</td>
</tr>
<tr>
<td>YAG, 500W</td>
<td>50000</td>
</tr>
<tr>
<td>CO\textsubscript{2}, 2000W</td>
<td>40000</td>
</tr>
<tr>
<td>CO\textsubscript{2}, 6000W</td>
<td>50000</td>
</tr>
</tbody>
</table>

Legend:
- green: emission into top soil
- yellow: waste
- blue: land use
- orange: natural resources
- brown: energy resources
- red: emission into ground water
- blue: emission into surface water
- yellow: emission into air
Contributions: ecological scarcity 06

Impact extrusion

- Three different levels of temperature:
 - cold \((T/T_{\text{melt}} < 0.3) \), warm, hot \((T/T_{\text{melt}} > 0.6) \)
- two different metals:
 - steel
 - aluminium (cold IE only)
- Datasets on
 - surface treatment (cold IE only)
 - warming (warm/hot IE only)
 - deformation stroke
 - 1 to five stroke treatments
- Inventory data:
 - energy inputs, capital equipment and factory operation
Results: ecological scarcity 06

Contributions: ecological scarcity 06
Deep drawing

- Two different modes: single stroke and continuous
- Different press sizes: 650, 3’500, 10’000, 38’000 kN
- One metal: steel
- Inventory data:
 - electricity,
 - compressed air
 - capital equipment
 - factory operation

Compressed air supply
Compressed air supply system

- compressor
- compressed air storage container (opt.)
- dryer (opt.)
- filter (opt.)
- pipe network (for distribution)
- consumer devices

Drivers of electricity consumption

- leakage rate
- pressure level
- appropriateness of control settings
- size of compressor

increase in electricity consumption due to filter and dryer:
- small installations: 5 %
- large installations: 3 %
Compressors installed in Switzerland

<table>
<thead>
<tr>
<th>power in kW</th>
<th><3</th>
<th>3-15</th>
<th>18-90</th>
<th>>90</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>installed compressors</td>
<td>110‘000</td>
<td>30‘000</td>
<td>8‘000</td>
<td>800</td>
<td>148‘000</td>
</tr>
<tr>
<td></td>
<td>74 %</td>
<td>20 %</td>
<td>5 %</td>
<td>1 %</td>
<td></td>
</tr>
<tr>
<td>electricity consumption [GWh]</td>
<td>11</td>
<td>150</td>
<td>400</td>
<td>200</td>
<td>671</td>
</tr>
<tr>
<td></td>
<td>1 %</td>
<td>20 %</td>
<td>53 %</td>
<td>26 %</td>
<td></td>
</tr>
</tbody>
</table>

Key figures compressors & network

- **Life time**: 15 years
- **750 hours per year**
- **Machine weight**:
 - 4 kW: 140 kg (35 kg/kW)
 - 300 kW: 4600 kg (15 kg/kW)
- **Increase in electricity consumption due to filter and dryer**:
 - Small installations: 5 %
 - Large installations: 3 %
- **Pipe diameter**: 100 mm
- **Network length**: 4'500 m
- **100 mg steel (large), 34 mg aluminium (small) per Nm³**
Datasets available

- Two different compressor sizes:
 <30 kW, >30 kW
- Three different pressure levels:
 - <30 kW: 8, 10, 12 bar
 - >30 kW: 6, 7, 8 bar
- Three different technology levels:
 - average
 - optimised
 - best generation (>30 kW only)

Electricity consumption

![Graph showing electricity consumption]

- average, large
- optimised, large
- best generation, large
- average, small
- optimised, small
Inventory data

- leakage rate > 30 kW:
 - average: 30%
 - optimised: 15%
 - best generation: 10%
- leakage rate < 30 kW:
 - average: 50%
 - optimised: 5%
- lubricating oil:
 - small: 10 mg / Nm³
 - large: 2.1 mg / Nm³

Results: cumulative energy demand
Results: ecological scarcity 06

Contributions: ecological scarcity 06
Conclusions

- chipping processes: production of material removed is dominant
- chipless shaping: deformation energy and general factory operation are most important
- laser machining dependent on power needed
- compressed air: substantial difference particularly between average, optimised and best
- metal machining datasets do not include degreasing => add it separately

Thank you very much for your attention!

Rolf Frischknecht
frischknecht@esu-services.ch